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ABSTRACT
For many large-scale combinatorial search/optimization prob-
lems, meta-heuristic algorithms face noisy objective func-
tions, coupled with computationally expensive evaluation
times. In this work, we consider the interaction between
the technique of “fitness caching”, and the straightforward
noise reduction approach of “fitness averaging” by repeated
sampling. Fitness caching changes the effect that noise has
on a fitness landscapes, as noisy values become frozen in
the cache. Assuming the use of fitness caching, we seek to
develop heuristic methods for predicting the optimal num-
ber of sampling replications (or “sweet spot”) for fitness av-
eraging, such that the search does not become trapped or
stalled by the effects of noise while keeping the computa-
tional cost of sampling low. We derive two analytic mea-
sures for quantifying the effects of noise on a cached fitness
landscape (probabilities for noise creating “false switches”
and “false optima”). We confirm (empirically) that these
measures correlate well with observed probabilities on a set
of four well-known test-bed functions (sphere, Rosenbrock,
Rastrigin, Schwefel). We also present results from a prelim-
inary experimental study on these landscapes, investigating
four possible heuristic approaches for predicting the optimal
sampling, for a random-mutation hill-climber using fitness
caching.

Track: Combinatorial Optimization and Metaheuris-

tics

1. MOTIVATION
There are a number of problem features that universally

pose challenges for all metaheuristic search/optimization pro-
cesses: predominant among these are noise/uncertainty, and
the slowness of fitness evaluation (i.e. the time necessary to
evaluate the objective function for any point in the search
space). The presence of noise in a fitness function impedes
making accurate comparisons between candidate solutions,
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or knowing how close the search process is to reaching a
certain performance objective. In many cases, it is possi-
ble to use an average of many independent fitness function
evaluations in order to reduce the noise. The length of time
required for a single fitness evaluation can be significant, as
it expands the length of the search by a direct multiplica-
tive factor, and limits the number of evaluations possible
for the search. Sometimes it is possible to use a less accu-
rate surrogate fitness function, which can be evaluated more
quickly, but at the cost of additional noise in the fitness esti-
mates (for a survey of fitness approximation, refer to [6]). In
general, it is impossible to eliminate both of these problem
features, although there is a wide variety of problems where
trade-offs can be made between the two.

When fitness evaluation is particularly computationally
expensive (e.g. in large complex simulations), it is some-
times attractive to cache fitness values for re-use, to save
the cost of re-evaluating them again later. At least in some
non-noisy optimization problems, this has been shown to be
an effective approach for reducing total computational cost
[10, 11], and we believe there is potential for applying it to
noisy search spaces as well. In this work, we apply a combi-
nation of formal and empirical methods to try to investigate
the relationship between fitness caching and “fitness averag-
ing”by repeated sampling, as a noise reduction technique. In
noisy environments, too little sampling can make the search
untenable, whereas too much sampling can be unacceptably
slow. Somewhere in between, there exists an ideal number
of sampling repetitions, or “sweet spot”, where the search
most efficiently reaches a desired fitness level. Assuming the
use of fitness caching, and using information that can be ex-
tracted from the fitness landscape fairly cheaply, we would
like to be able to predict, at least roughly, where this “sweet
spot” will fall.

The basic intuition motivating this research is that some
landscapes are much more sensitive to the effects of noise
than others, with regard to movement through these land-
scapes. For instance, a landscape that containing large steep
mountains may be easily traversed to values of high fitness,
even in the presence of significant noise, whereas a landscape
that contains many gentle slopes may be rendered unnavi-
gable by local search techniques even by a small amount of
noise. It would be very useful to have an efficient method of
assessing the robustness of a landscape with respect to noise,
in order to choose an appropriate sampling rate when apply-
ing a meta-heuristic search technique to the problem. The
current study investigates the correlation between the dis-
tribution of fitness gradients throughout the landscape with



the deleterious effects of varying levels of noise on landscape
traversal.

The paper begins by situating the present work in the con-
text of related research in the field. We then propose two
measures to quantify aspects of the impact of noise on search
processes within fitness landscapes: the probability that
noise generates false local optima in the landscape, and the
probability that noise will result in an incorrect choice when
comparing two neighboring locations in the space. We of-
fer mathematical expressions for these two measures, which
are numerically confirmed by Monte Carlo simulations of
the two respective probabilities, on a set of four well-known
test-bed functions (sphere, Rosenbrock, Rastrigin, Schwe-
fel). Next, we discuss how these measures could be used in
heuristics for choosing an optimal sampling number for noise
reduction. We then present the results of an experimen-
tal study where we empirically determine optimal sampling
rates on the four test landscapes, given a straightforward
stochastic local search technique (hill climber) that uses fit-
ness caching, and compare the potential of four heuristic
approaches to predict the “sweet spot” for noise reduction.
We conclude by presenting several avenues for possible fu-
ture work.

2. RELATED WORK
The beneficial effects of fitness caching (specifically for ge-

netic algorithms) have been discussed by Kratica [10], and
applied in practice in [11]. However, we are unaware of pre-
vious research that discusses the use, or repercussions, of
caching for noisy optimization problems. Considerably more
research has been done on meta-heuristic search and opti-
mization in noisy fitness landscapes, and remains a topic of
considerable interest. For example, recent work spans from
finding efficient techniques of determining the best individ-
ual from a noisy population [5], to defining standard sets
of noisy functions for benchmarking different optimization
techniques [4]. The breadth of work is far beyond the scope
for this paper; for a helpful survey on noise/uncertainty in
evolutionary algorithms, see [7].

However, it is worth highlighting some of the more perti-
nent/related research. One strand of research concerns the
analysis of search spaces or fitness landscapes, such as the
study of Kauffman’s NK-landscapes [8, 9], similarly inspired
tunable landscapes [15], as well as search performance on
such landscapes (e.g. [13]). Particularly relevant is the work
on adaptive walks through noisy fitness landscapes [12]. Our
work also pertains to adaptive walks (or neighborhood-based
search algorithms in general) in noisy landscapes, but with
fitness caching the noise is frozen, as we will discuss later.
Also, as our application interests are more toward simulation
optimization than understanding of biological evolutionary
processes, we chose to investigate landscapes based on op-
timization benchmarks. So-called “fitness evolvability por-
traits” [16] appear to be another promising direction for fit-
ness landscape analysis. While several of the ideas about
characterizing the landscape at different fitness levels might
be productively incorporated into future work on the sam-
pling with fitness caching problem we are addressing here,
the work in [16] currently does not consider noise in this
way.

Several researchers ([2], and more recently [1]) have dis-
cussed/debated the relative merits of repeated sampling for
noise reduction versus alternative methods, such increas-

ing population size. We note that when fitness caching is
used, separate individuals in a population-based search do
not contribute independent fitness trials, so increasing the
population offers no advantages in reducing the impact of
noise. Rana et al. [14] examine the effects of noise on search
landscapes, in particular discussing the creation of false local

optima and the soft annealing of peaks (or “melting” effect,
as referred to by Levitan and Kauffman [12]). Our current
work is also interested in the creation of false local optima by
noise, but the use of fitness caching changes both the char-
acter and consequences of such local optima (as we discuss
in Section 3.1).

In conclusion, we are unaware of prior work on noisy opti-
mization that analyzes the effect of fitness caching, or offers
heuristics or guidelines for choosing sampling repetitions in
this particular situation. The lack of such literature may
suggest either that the combination has not been given seri-
ous consideration, or possibly that fitness caching is not an
advisable approach when dealing with noisy search prob-
lems. We suspect that there are circumstances where it
would prove beneficial. However, this is ultimately an em-
pirical question, and one that we hope will be resolved by
future work that uses fitness caching in noisy environments.

3. THEORETICAL ANALYSIS
We will begin from a theoretical perspective, offering a for-

mal description of the problem, and deriving several mathe-
matical measures that may be useful, before we move on to
more experimental methods.

In this paper, we will focus exclusively on additive Gaus-
sian (normally distributed) noise with mean 0. While other
noise distributions occasionally arise in some real-world prob-
lems, we are concerned with the question repeated sam-
pling of a noisy fitness function, and as a result of the Cen-
tral Limit Theorem, the shape of the noise distribution ap-
proaches a normal distribution when a reasonable number
of samples is used. If the mean of the noise is nonzero and
unknown, this makes it impossible to determine the true ex-
pected value of the fitness landscape at any point, and we
do not consider this case. We will also assume that the vari-
ance of the additive noise is uniform across the search space;
the extension of considering noise with location-dependent
variance is left as future work.

We will also make the simplifying assumption that there is
ample memory such that all encountered fitness values will
be cached and are never forgotten, and that the computation
time required for caching is negligible compared to the time
required for fitness evaluation (which is not unreasonable,
e.g., when optimizing complex simulations with lengthy run-
times).

3.1 Derivation of Measures
Let us consider a “true” (noiseless) landscape function L

which has been obscured by some amount of additive noise
(N), which is drawn from a normal distribution with mean 0
and standard deviation of σ (N ∼ N (0, σ2)).1 We will as-
sume the neighborhood-based search, where the task is min-
imization (find x s.t. L(x) is a minimum). Without fitness
1In the context of real-world problems, it may be confusing
to think of there being a “true” fitness landscape with noise
being added to it; alternatively, L may be viewed as the
true expected value of the noisy function if it were called
repetitively.



caching, each time a search algorithm evaluates a point x1 in
the search space S (x1 ∈ S), a new fitness value L(x1)+N is
returned, where N is independently drawn from N (0, σ2).
Let x2 be a neighbor of x1, such that L(x2) is greater than
L(x1) by a positive amount � (L(x2) = L(x1) + �). This
means that if the search process was repeatedly choosing
whether to move between x1 and x2, it would (probabilis-
tically) end up at x1. With fitness caching, this is not the
case. Once fitnesses for x2 and x1 have been chosen, they
are fixed, or frozen. This caching is effectively the same as
reading values from a new frozen”noisy landscape Ln, which
is generated from L by adding N (N ∼ N (0, σ2) to every
location in X. If the fitness value Ln(x2) turns out to be
smaller than Ln(x1), then noise has caused a comparison be-
tween two points to now be wrong (we will denote this as a
“false switch”). This freezing effect means that when fitness
caching makes the impact of noise more serious. Further-
more, rather than noise having a positive “melting” effect
that can help a search process escape local optima (as fur-
ther discussed in [12, 14], and as is implicit in the design of
simulated annealing), fitness caching causes any new local
optima that are created by the noise to be “frozen” in place.
We will denote local optima that are present in Ln, but not
present in the original L as “false optima”.

When faced with a new landscape to be searched, we
do not know what the landscape looks like. However, it
is possible to probe the landscape for some information,
before starting a search process. Let us assume that we
can obtain a reasonable estimate of the true � distribu-
tion within the landscape. That is, we would like the dis-
tribution of fitness differences between neighboring points
(|L(xi)− L(xj)| ∀(xi, xj) ∈ S2 s.t. xi and xj are neigh-
bors in the space). We will denote the probability density
function (pdf) for this � distribution as P (�). (Monte Carlo
sampling from Ln will give an estimate of the noisy � distri-
bution, which may be a tolerable approximation of the true
� distribution, or may need to be corrected for noise.)

Given the pdf P (�), we will now derive expressions for the
likelihood of noise creating false switches and false optima,
in terms of the standard deviation of the noise (σ).

For convenience, we will denote the pdf for the Gaussian
distribution with mean value, µ, and standard deviation, σ
by f(x, µ, σ), defined as follows:

f(x, µ, σ) =
1
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3.1.1 False Switch Probability

In equation 2 the inner integral represents the probability
of the noise added to L(x2), N2 being less than the noise
added to L(x1), N1. The inner two integrals (together) rep-
resent the probability of a false switch for a given difference
between neighbors’ real fitness values, �. The outermost in-
tegral (integrating across all possible �s) computes the prob-
ability of a false switch for the given a � distribution P(�).
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Equation 2 can be simplified to equation 3, where Erf
denotes the Gaussian error function.

Figure 1: This figure illustrates variables used to

determine the existence of a false switch. N1 and N2

represent the added noise to the original nodes, and

� represents the vertical distance between the two

original neighbors. False switches occur whenever

N1 is greater than � + N2.
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3.1.2 False Optima Probability

In order to obtain an analytic formula for the probability
of creating false optima, we must make the additional sim-
plifying assumption that the distribution P (�) is the same
throughout the space – i.e., at every x, P (�) is the same
regardless of L(x).

For an arbitrary noise distribution (P (N)), the probability
of being a local optima in Ln is given by equation 4.
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Similarly, the probability of a given point being a local
optima in both L and Ln is given by equation 5.
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False optima are points that appear as local optima after
noise is applied, but were not local optima before noise, thus
the probability of being a false optima is calculated by sub-
tracting equation 5 from equation 4. Equations 4 and 5 were
for arbitrary noise distributions, but we since we are assum-
ing all noise is additive Gaussian noise, we can transform
them into equations 6 and 7 respectively.
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Given P (�) (the probability density function for the �-
distribution of a fitness landscape), we now have closed-form
expressions for the probabilities of a “false switch” occurring
between any two neighboring points, and the probability of
any given point becoming a “false optima.”2

3.2 Fitness Landscapes
The abstract elegance of formally deriving mathematical

measures or descriptive statistics about fitness landscapes
must be grounded by the study of concrete fitness land-
scapes. This partially serves to validate the derivations,
but more importantly it helps us judge the appropriateness
of any simplifying assumptions that were made in order to
make the mathematics tractable.

For our fitness landscapes, we selected four noiseless fit-
ness functions that are often studied in the context of real-
valued black-box optimization, and which exhibit differing
landscape features (such as multi-modality/nonconvexity).
Specifically, we chose the sphere, Rosenbrock, Schwefel, and
Rastrigin functions (adapted from [3]). These noiseless land-
scapes are assumed to be the “true” underlying functions,
which we will combine with varying levels of additive Gaus-
sian noise to create the “obscured” noisy fitness landscapes
that must be searched. Surface plots for the 2-dimensional
versions of these fitness landscapes are shown in Figure 2,
shown for illustrative purposes to communicate the general
shape of these spaces. All results presented in the paper
used the 10-dimensional version of these functions, where
each dimension was discretized on the domain [−5, 5] at a
resolution of 0.05, creating a discrete search space of size
20110 ≈ 1.1 × 1023. The general mathematical function to
generate the N-dimensional case for each landscape is dis-
played below the graphics in Figure 2.

In Figure 3, kernel density distribution plots3 show the �
distributions (distribution of differences between the “real”
fitness values at neighboring locations in the fitness space)
for each of these landscapes. Note that the different distri-
butions vary significantly in shape and range of values.

3.3 Empirical Measure Validation
We predicted the number of false switches and false op-

tima in each fitness landscape using the measures defined in
Section 3 above and an approximate � distribution defined by
sampling 5000 differences between neighbors’ real fitness val-
ues. Then we observed the real probability of false switches
being created by noise by testing 10,000 pairs of neighbor-
ing points, which were evaluated before and after varying
amounts of Gaussian noise was added. Similarly, we used
a Monte Carlo method (testing 10,000 points) to estimate
the real probability that a point becomes a false optima as a
result of differing magnitudes of Gaussian noise. As shown
in figure 4, the formulas we derived for these two measures

2Despite being closed-form expressions, in general numerical
integration approaches will be required, especially since P (�)
may be an arbitrary pdf, approximated numerically.
3Kernel density distribution plots provide a way to visualize
distributional information that avoids the artifacts caused
by bin-size choices in histograms.

Figure 2: This figure shows 2-D versions of the

sphere, Rosenbrock, Schwefel, and Rastrigin func-

tions we used as our fitness landscapes. The equa-

tions are shown below each plot.

Figure 3: This figure shows the � distribution (dif-

ferences between neighboring nodes) for each fitness

landscape.



Figure 4: We predicted the probabilities of false switches and a false optima occurring using the measures

presented in section 3 and observed the actual probabilities that each occurred by adding various amounts

of noise to each function and evaluating the resulting proportions of false switches and false optima.

closely approximate the directly observed measures.

4. EXPERIMENTS
We are further interested in whether these or other sim-

ple measures can be useful in predicting the performance of
an evolutionary search technique on a noisy landscape. In
particular, it would be most useful to be able to choose the
number of times a noisy function should be evaluated and
averaged, to enable a search mechanism to reach very good
locations in the space with as few function evaluations as
possible. Specifically, we ran experiments at varying noise
levels to determine the number of evaluations required by
stochastic hill climbers (that restart when stuck) to reach
an average fitness value that is in the best 0.0001% of the
landscape. These numbers of evaluations are then scaled by
the number of times the function would need to be evaluated
to reach their respective noise levels.

The noise level (standard deviation of noise) for which the
search progresses most rapidly is denoted σideal (which will
vary for each landscape). See Figure 5 for an illustration of
this process.

We considered four heuristic methods for using a land-
scape’s � distribution to predict σideal and compared the
number of evaluations required by the hill climber at each
method’s predicted σideal to those required at the true σideal.

The four heuristics for predicting σideal are listed below.
In order to calibrate the heuristics, it was necessary to use
scaling factors based on the true σideal for each landscape;
however, for testing, the heuristics are applied the meth-
ods to each landscape separately, to see whether they could
capture the differences between the landscapes.

• Fixed Noise Level: The geometric mean of the σideal

for each landscape is 1.91 and this constant noise value
was used as the σFixed Noise Level. This is the most
näıve heuristic, as it treats all landscapes the same,
without making use of the � distribution information at
all. It is included mainly as a baseline for comparison.

• Direct Ratio: The geometric mean of the ratio of the
median of each � distribution to the σideal for each
landscape is 3.97. We calculated σDirect Ratio by di-

viding the median of each landscape’s � distribution by
this ratio.

• False Switch: The geometric mean of the proportion
of false switch values corresponding to the σideal for
each landscape is 0.084. The standard deviation of
noise which predicts a proportion of false switch value
of 0.084 is the σFalse Switch

• False Optima: The geometric mean of the proportion
of false optima values corresponding to σideal for each
landscape is 5.16×10−5. The standard deviation which
predicts this value is the σFalse Optima.

5. RESULTS AND DISCUSSION
To compare these methods on each of the four landscapes,

we calculate the inefficiency ratio as the number of evalu-
ations required by each method’s prediction for σideal (i.e.
σFixed Noise Level, σDirect Ratio, σFalse Switch, and σFalse Optima)
divided by the number required at the true σideal. Note that
an inefficiency ratio of 1.0 would be a perfect prediction, and
also that ratios higher than 20 have been cut off, due to com-
putational constraints.

To summarize the performance results from Figure 6:

1. None of the methods performed well on the Rosenbrock
landscape. The Rosenbrock function is sometimes re-
ferred to as a “banana function” due to its long bend-
ing valley which must be followed to reach the global
optimum. The failure to predict an optimal level of
noise may be due in large part to the importance of
traversing this valley, where the fitness gradient is not
very strong. In other words, the initial sampling of the
whole space to determine the � distribution is mislead-
ing, since a particular region of the space (the valley
floor) is much more important for search performance
than the space at large, and requires lower noise values
to traverse.

2. The fixed noise level method performed quite poorly
on all but one landscape. In general, this is not too
surprising. We expect that different landscapes will
require different optimal noise levels, and choosing a



Figure 6: This figure shows how inefficient the standard deviation chosen by each method is by calculating

the ratio of evaluations to that required at optimal noise level, σideal. A perfect solution would have an

inefficiency ratio of 1.0.

Figure 5: Each colored line on the top plot show

fitness values reached after some number of evalu-

ations at a given noise level, σx. Using these lines

we calculated the number of evaluations required to

reach a threshold value. We then scaled the number

of evaluations it would take to reduce a large amount

of noise to the specified noise level. Then we plotted

the standard deviations against the scaled number

of evaluations in the bottom figure. The minimum

number of evaluations occurs at a certain noise level

(i.e. σideal).

fixed level value to apply to all landscapes is not likely
to perform well.

3. There is no clear winner among the other three meth-
ods, with the false optima and direct ratio methods
were each best on certain landscapes, but the false
switch method also consistently performed well. This
result is somewhat disappointing, in that heuristics us-
ing our derived metrics (False Switches and False op-

tima) do not have a strong advantage over the simpler
approach (Direct Ratio) of scaling by the median value
from the � distribution.

While these results lack clarity, it is somewhat encour-
aging that the three methods using information from the
� distribution serve as better predictors than the naive ap-
proach. This suggests that the heuristics used are at least
partially correlated with choices for σideal, and perhaps im-
proved mappings may be developed along similar lines, to
help offer prescriptive guidelines for choice of sampling rep-
etitions based on this information.

6. FUTURE WORK AND CONCLUSIONS
The experimental results we have presented are based only

on an examination of four fitness landscapes, which is too
small to be a good representation of the types of fitness land-
scapes encountered in real problems. Furthermore, it has
been argued that some of these particular test landscapes
may not be the most appropriate choice for benchmark func-
tions for evolutionary algorithms [17]. Accordingly, further
similar studies along these lines, involving a greater diversity
of noisy fitness landscape, are called for.

However, perhaps a more fundamental issue with our cur-
rent approach is that the search performance on these land-
scapes appear to be significantly different enough that none
of the heuristics approaches we investigated was able to per-
form well on all of them. In particular, the failure to pre-
dict a good noise level for the Rosenbrock landscape mer-
its further investigation. This may suggest that a funda-
mentally different approach is needed. Perhaps knowledge
of the global � distribution for a landscape is insufficient
to make a good prediction of what the optimal noise level
would be, and that other knowledge is required. This may
be because intelligent search techniques find relatively good
solution areas quickly, and thus spend very little time in the



large poor-performance areas of the space, in which case a
more biased approach for sampling � distributions might be
fruitful (e.g., taking inspiration from [16]). For instance, one
could imagine running a sequence of searches, bootstrapping
the � distribution from the points that were encountered by
the previous search on the noisy landscape, thus refining the
estimates for optimal sampling choice in later searches.

In addition to their role in meta-heuristic search processes,
fitness landscapes also play an important role in the study
of many complex systems, and may provide a lens for view-
ing adaptive or evolving systems in new and enlightening
ways (c.f. Kauffman’s work on evolutionary landscapes [8]).
It would be interesting to investigate whether there are in-
terdisciplinary implications for studying frozen noisy land-
scapes, in relation to processes that occur in real biological
systems.

An improved understanding of the extent to which noise
can be present in a fitness landscape without seriously in-
hibiting successful search and adaptation in that space is a
broad but desirable goal, which would significantly advance
the field of search/optimization when dealing with uncertain
problems. Our present research provides some progress to-
wards this goal in the specific context of fitness caching, but
the path is far from clear, and significant work remains to
be done in this direction.

In conclusion, we offer a preliminary foray into the study
of the interactions between noisy landscape sampling and
fitness caching. We presented and verified analytic formu-
las for two measures that could be useful for predicting
the impact of noise on the performance of fitness-caching
neighbor-hood based meta-heuristic search processes in dis-
crete fitness landscapes. We experimentally examined sev-
eral heuristics for choosing an optimal sampling level under
these conditions, and while none of these heuristics offer per-
fect solutions to this problem, at the very least they provide
reasonable initial choices, when there is no a priori infor-
mation about what sampling level to use given an unknown
fitness landscape. Additionally, they provide a starting place
for developing better heuristics for this problem. However,
further research is required before we can offer prescrip-
tive recommendations for noise level reduction methodology.
Similar investigations on additional fitness landscapes using
other meta-heuristic search methods (simulated annealing,
GAs, tabu search, PSO, etc.) will likely offer further insight
into the effects of noise on landscape structure.
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